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1. Introduction

The AdS/CFT correspondence [1 – 3] is a particularly striking example of relation between

gauge theories in four dimensions and string theories: N = 4 supersymmetric Yang-Mills

(SYM) theory is expected be dual to type IIB superstring theory on AdS5×S5. In order to

check this powerful connection one would like to compare results for the same observables

as obtained from the different sides of the correspondence. Unfortunately, while it is rela-

tively easy to compute quantities at weak coupling through familiar gauge techniques and

at strong coupling by exploiting string methods, there is no overlap between the regions of

validity of the two calculations. The original checks of the conjecture have been therefore

restricted to compare highly protected quantities, such as correlation functions of chiral

operators, where the full complexity of perturbation theory does not need to be taken into

account.

In the last years the situation has experienced a dramatic improvement with the dis-

covery of integrability in N = 4 SYM at large N [4]: Bethe ansatz techniques applied to

the computation of anomalous dimensions of local operators have opened the possibility to

extrapolate results from weak to strong coupling. The most astonishing example involves

the so-called cusp anomaly, whose nonperturbative expression is encoded into an exact

integral equation [5]: the weak coupling perturbative solution agrees with the Feynman

diagram expansion [6] while the strong coupling asymptotic solution [7]–[11] reproduces

the sigma-model result obtained from string theory [12]–[14].

More recently we have seen also an impressive advance in studying scattering ampli-

tudes in N = 4 SYM at large N : a particulary intriguing conjecture for the all-order form

of MHV n-gluon amplitudes has been proposed in [15], starting from the weak coupling
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expansion. The BDS conjecture was found to be consistent with the string computation

performed at strong coupling by Alday and Maldacena [16] for n = 4. Quite surpris-

ingly Wilson loops play a central role in this last development, the amplitude itself being

calculated from light-like loops in string theory. This unexpected relation, appearing in

string theory from a T-dual description of the scattering process, holds even at weak cou-

pling [17 – 20] and survives the recent six-gluons calculations [21 – 23] while disproving the

BDS conjecture in its original form. The cusp anomaly is also part of this story, appearing

directly in the amplitudes through divergent and finite terms: actually its original definition

was exactly given in terms of light-like Wilson loops [24, 25].

The importance of Wilson loops in checking AdS/CFT correspondence emerges also

in a different computation, that represents an older example of interpolation between weak

and strong coupling: the circular Wilson loop, whose exact expectation value, calculated

from the gauge theory side, appears to be captured by a matrix model [26, 27], encoding

the full perturbative expansion. This result is consistent with the AdS/CFT prediction,

the strong coupling limit being precisely reproduced by string computations including an

infinite series of 1/N corrections [28 – 30] (see also [31]–[35]). Nevertheless the belief that a

matrix model controls the circular Wilson loops was largely based on the original two-loop

computation [26], showing that in Feynman gauge only exchange diagrams contribute to the

quantum average, self-energies and vertex diagrams describing the true SYM interactions

summing to zero in the final result. A subsequent argument [27], based on the conformal

relation between the circle and the trivial straight line, was often advocated to justify the

assumption that interacting diagrams decouple at all orders, at least in Feynamn gauge,

but a clear reason for this astonishing cancelation was missing. Doubts on this all-order

behavior, based on Wilson loops correlators at three-loops, were raised in [36, 37] while it

was soon realized that there are many matrix models, with the same two-loop expansion,

leading to the string result at strong coupling [38].

On the other hand the circular Wilson loop is invariant under a particular subset of

superconformal transformations, generated by combinations of Q’s and S’s charges: with

respect to the full superconformal group it is a 1/2 BPS object. For long time it was

suspected that the deep reason behind the exact matrix model computation should be

found in the BPS property: in particular the vanishing of interacting diagrams suggested

the existence of some twisted version of the theory [39], making the circular Wilson loop

a topological observable. Recently it was proved [40] that this is indeed the case: the

theory can be formulated on S4 in such a way that the path integral localizes on a finite

dimensional space and reduces to a simple gaussian matrix model. The circular Wilson

loop, due to its invariance properties, can be computed as an observable in this matrix

model, leading to the expected result: quite interestingly instanton corrections are claimed

to be absent. The author has studied also the more general situation of N = 2, 2∗ theories

obtaining localization on more complicated matrix models and instanton corrections.

It is very tempting therefore to study generalizations of the circular Wilson loops,

carrying some amount of superconformal invariance: they could generate new exact com-

putations at gauge theory level, in principle testable at strong coupling by string theory.

An important step in this direction has been taken in [41]: the authors have been able to
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construct a family of supersymmetric Wilson loop operators in N = 4 SYM, modifying the

scalar couplings with the geometrical contour. For a generic curve on an S3 in space-time

the loop preserves two supercharges but they discussed special cases which preserves 4, 8

and 16 supercharges. They also found for certain loops explicit dual string solutions. Of

particular interest are the loops restricted to S2 because a one-loop computation suggests

the equivalence with analogous observables in purely bosonic Yang-Mills theory on the

sphere. Two-dimensional Yang-Mills theory on compact surfaces can also be solved by

localization [42] and one would suspect the methods presented in [40] for the circular loop

may be extended to the present situation. Another interesting feature is that the contours

are not constrained to be smooth and possible links with the cusp anomaly may be explored.

To pursue the above program it is important to check the equivalence between su-

persymmetric Wilson loops on S2 and two-dimensional Yang-Mills observables beyond the

leading perturbative order: even at two loops this involves a non-trivial technical compu-

tation. Basically one should calculate the fourth-order contribution, in closed form, to a

generic contour lying on a sphere embedded in space-time: all the loops in this family are,

in particular, non-planar. The strategy followed in the case of the circle [26] was first to

prove finiteness of a generic loop, with the usual scalar coupling, in the Feynman gauge and

then to show, in the circular case, the cancelation between self-energy diagrams and vertex

diagram, without computing any integrals at this order. The sum of ladder diagrams can

be instead performed rather easily, being reduced to a matrix model problem because the

effective propagators turns out to be constant. The situation here appears far more com-

plicated: it is not guaranteed to find similar properties and the conjectured result could be

recovered through a delicate combination of ladder and interacting diagrams.

In this paper we are mainly concerned with this problem and we perform the two-loop

computation needed to support the conjecture. We will restrict ourselves to a class of

contours made by two longitudes separated by an arbitrary angle: these contours have

cusps but, as we will see later, no divergence arises thanks to the peculiar scalar couplings.

We find that the equivalence with Yang-Mills theory on the sphere survives at two loops in

a rather non-trivial way: in fact only when ladder diagrams are combined with self-energy

and vertex graphs the expected result is recovered. The plan of the paper is the following:

in section 2 we briefly review the properties of the family of loops introduced in [41], paying

particular attention to tha case of S2, and we explain the details of the conjectured relation

with YM2. Section 3 is devoted to the perturbative expansion of supersymmetric Wilson

loops: in particular we derive a compact formula that encodes the contribution of self-

energy and vertex diagrams to the two-loop expansion of supersymmetric Wilson loops in

N = 4 SYM. It gives a manifestly finite result and it is based on a particularly intriguing

“subtraction” procedure, suggested by the light-cone gauge formulation of the theory. In

section 4 we specialize our computations to the case of the cusped loops on S2: by a

mixed combination of analytical and numerical calculations we obtain the fourth-order

contribution, finding exact agreement with the two-dimensional theory. In section 5 we

report on our conclusions and possible future developments. The relation of the formulas

presented in section 3 with the light-cone gauge is the subject of appendix A. Appendix

B contains instead some technical material on the relevant integrals. After submission,
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another paper [43] appeared addressing the same issues.

2. Supersymmetric Wilson loops and YM2

In the context of AdS/CFT correspondence it is quite natural to consider generalizations

of the familiar Wilson loop operator: the gauge multiplet of N = 4 SYM includes besides

one gauge field, six real scalars and four complex spinor fields and it is then possible to

incorporate them through suitable couplings to the contour. We will consider here the extra

coupling of the scalars ΦI (with I = 1, . . . , 6) leading to the following expression [44, 45]

for the Wilson loop

W =
1

N
TrP exp

∮

C
dt(iAµẋµ(t) + |ẋ|ΘI(t)ΦI) , (2.1)

where xµ(t) is the path of the loop and ΘI(t) are arbitrary couplings. While this choice

is reminiscent of the ten dimensional origin of the observable, we remark that fermionic

couplings can be also considered [46].

To generically preserve some SUSY one should require that the norm of ΘI be one,

but that alone is only locally sufficient. If one considers the supersymmetry variation of

the loop, then at every point along the loop one finds different conditions for preserving

supersymmetry. Only if all those conditions commute, will the loop be globally supersym-

metric. This happens, for example, in the case of the straight line, where ẋµ is a constant

vector and one takes also ΘI to be constant: at every point one finds indeed the same

equation. This possibility has been generalized by Zarembo [47], who assigned for every

tangent vector in R
4 a unit vector in R

6 by a 6× 4 matrix M I
µ and took |ẋ|ΘI = M I

µẋµ.

If the contour is contained within a one-dimensional linear subspace of R
4, half of the

super-Poincaré symmetries generated by Q and Q̄ are preserved, while inside a 2-plane 1/4

of them survives. More generally inside R
3 we have 1/8 SUSY and for a generic curve 1/16.

An interesting property of those loops is that their expectation values seem to be trivial,

with evidence both from perturbation theory, from AdS/CFT duality and from a topologi-

cal argument [47 – 51]. Although surprisingly this makes these observables somehow trivial

if one would explore the interpolation between weak and strong coupling in N = 4. On the

other hand it is clear that some amount of supersymmetry should be present in order to

get exact results: one can therefore resort to different loops, preserving some combination

of the super-Poincaré and the super-conformal symmetries, generated by S and S̄.

The first celebrated example is the circular Wilson loop [26, 27]: the contour xµ(t) =

(R cos t, R sin t, 0, 0) parameterizes a (euclidean) circle while ΘI is a constant unit vector

in R
6. Its BPS properties are simply understood: the vacuum of N = 4 SYM has 32

supercharges generated by the spinors

ǫ(x) = ǫ0 + xµγµǫ1 , (2.2)

where ǫ0 is related to the Poincaré supersymmetries and ǫ1 is related to the super-conformal

ones. Here γµ are the usual Dirac matrices of SO(4) while we will denote by ρI the SO(6)

Dirac matrices, acting on the R-symmetry index of ǫ (the two sets of matrices are taken to
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mutually anti-commute). At the linear order the supersymmetry variation of the Wilson

loop is proportional to

(−iγ1 sin t + iγ2 cos t + ρ3)ǫ(x). (2.3)

The above combination vanishes when

ǫ0 = Rρ3γ1γ2ǫ1 : (2.4)

these configurations preserve 1/2 of the supersymmetries, always involving super-conformal

transformations. The quantum behavior of this class of loops is far more interesting than

their straight line cousins. For the circular loop, conformal invariance predicts that the

expectation value of the loop operator is independent of the radius of the circle. In their

seminal paper [26] Erickson, Semenoff and Zarembo found that the sum of all planar

Feynman diagrams which have no internal vertices (which includes both rainbow and ladder

diagrams) in the ’t Hooft limit produces the expression

〈WC〉ladders =
2

√

g2N
I1(

√

g2N), (2.5)

where I1 is the Bessel function. Taking the large g2N limit gives

〈WC〉ladders =
e
√

g2N

(π/2)1/2(g2N)3/4
, (2.6)

which has an exponential behavior identical to the prediction of the AdS/CFT correspon-

dence [52, 53],

〈WC〉AdS/CFT = e
√

g2N . (2.7)

It is intriguing that this sum of a special class of diagrams produced the exact asymp-

totic behavior that is predicted by the AdS/CFT correspondence, considering that it does

not include any diagrams which have internal vertices. Assuming that the AdS/CFT

prediction is indeed the correct asymptotic behavior, one could optimistically guess that

corrections to the sum of ladder diagrams cancel and the result (2.5) is exact. This ex-

pectation was checked in [26] by computing the leading order corrections to (2.5) coming

from diagrams with internal vertices. These occur at order g4N2 and these diagrams do

indeed cancel exactly when the spacetime dimension is four. Assuming the vanishing of the

interacting diagrams at higher-order at finite N either (consistently with the fourth-order

calculations ) an exact expression for the Wilson loop, by summing the ladder diagrams,

has been further proposed [27]

〈WC〉 =

〈

1

N
Tr exp(M)

〉

=
1

Z

∫

DM
1

N
Tr

[

exp(M)
]

exp

(

− 2

g2
TrM2

)

. (2.8)

We see that the exact value of the Wilson loop is obtained by computing a particular

observable in a gaussian matrix model, encoding the full resummation of the perturbative

series. We stress that this expression has been argued on the basis of some properties of the

theory in Feynman gauge: the basic assumption that interacting diagrams give vanishing
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contribution has been checked indeed in this gauge. Moreover the ladder diagrams can be

summed by the matrix model (2.8) because of the peculiar structure of the combined vector-

scalar propagator: let us consider the 2n-th order term in the Taylor expansion of the loop

1

N

∫ 2π

0
dt1

∫ t1

0
dt2 · · ·

∫ t2n−1

0
dt2nTr

〈(

iA(t1) + Φ(t1)
)

· · ·
(

iA(t2n) + Φ(t2n)
)〉

.

We are interested in all Wick contractions in the free-field theory, which represent the

contribution of ladder diagrams: in Feynman gauge for the circular loop we have

〈
(

iAa(t1) + Φa(t1)
)(

iAb(t2) + Φb(t2)
)

〉0 =
g2δab

4π2

|ẋ(1)||ẋ(2)| − ẋ(1) · ẋ(2)

(x(1) − x(2))2
=

g2δab

8π2
. (2.9)

Since each propagator is effectively constant, we can easily perform the sum, and account

for the factors of N , by doing the calculation in the zero-dimensional field theory, namely

the matrix model (2.8).

The above picture has passed many tests along the years but only recently an argu-

ment valid at any order in perturbation theory (and also at non perturbative level) has

been proposed [40]: in particular the new construction is gauge-independent and directly

produces the result (2.8) for the Wilson loop without referring to Feynman diagrams. The

idea consists in formulating N = 4 SYM on S4: the relevant supersymmetries are generated

by conformal Killing spinors that reduces, in the decompactification limit, to the super-

conformal spinors (2.2). The partition function of the theory can be computed exactly by

deforming the action with a Q-exact term and applying a localization procedure: the path-

integral collapses on the zero-modes (on S4 ) of some scalar fields of the theory, becoming in

this way a simple gaussian matrix model. Quite remarkably gauge fields play no role in the

functional integration, the theory localizing into the (trivial) set of gauge flat-connection

on S4. The circular Wilson loop can be obtained exactly as a Q-invariant observable in this

construction, thanks to its BPS property, and therefore localizes into the constant modes as

well. Instanton contributions are also argued [40] to decouple completely from the matrix

computation and therefore (2.8) seems to be exact also at non perturbative level.

These results can be seen as an explanation of the role of the SUSY invariance in

the cancelations appearing at perturbative level, underlying the birth of the magic matrix

integrals: it would be nice of course to discover more general situations in which exact

computations can be performed in this way. Quite happily a new class of BPS Wilson loops,

generalizing the circular loop, has been introduced in [41]: a simple way to understand their

construction is to observe that it is possible to pack three of the six real scalars into a self-

dual tensor

Φµν = σi
µνM

i
IΦ

I , (2.10)

and to involve the modified connection

Aµ → Aµ + iΦµνxν (2.11)

in the Wilson loop. The crucial elements in this construction are the tensors σi
µν : they

can be defined by the decomposition of the Lorentz generators in the anti-chiral spinor
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representation (γµν) into Pauli matrices τi

1

2
(1 − γ5)γµν = iσi

µντi , (2.12)

where the projector on the anti-chiral representation is included (γ5 = −γ1γ2γ3γ4). The

matrix M i
I appearing in (2.10) is 3 × 6 dimensional and is norm preserving, i.e. MM⊤

is the 3 × 3 unit matrix (an explicit choice of M is M1
1 = M2

2 = M3
3 = 1 and all other

entries zero).

These σ’s are basically the same as ’t Hooft’s η symbols used in writing down instanton

solutions, a fact not surprising because the gauge field is self-dual there. Another, more

geometric, realization of them is in terms of the invariant one-forms on S3

σR,L
1 = 2

[

±(x2dx3 − x3dx2) + (x4dx1 − x1dx4)
]

σR,L
2 = 2

[

±(x3dx1 − x1dx3) + (x4dx2 − x2dx4)
]

σR,L
3 = 2

[

±(x1dx2 − x2dx1) + (x4dx3 − x3dx4)
]

,

(2.13)

where σR
i are the right (or left-invariant) one-forms and σL

i are the left (or right-invariant)

one-forms: explicitly

σR
i = 2σi

µνxµdxν . (2.14)

The BPS Wilson loops can then be written in terms of the modified connection Aµ +

iΦµνxν as

W =
1

N
TrP exp

∮

dxµ
(

iAµ − σi
µνxνM i

IΦ
I
)

. (2.15)

We remark that this construction needs the introduction of a length-scale, as seen by

the fact that the tensor (2.10) has mass dimension one instead of two. The whole procedure

should be consistent therefore when we fix the scale of the Wilson loop. Actually the

operator (2.15) is supersymmetric only restricting the loop to be on a three dimensional

sphere. This sphere can be taken embedded in R
4, or coincide with fixed-time slice of

S3 × R. The authors of [41] have shown that requiring that the supersymmetry variation

of these loops vanishes for arbitrary curves on S3 leads to the two equations

γµνǫ1 + iσi
µνρiγ5ǫ0 = 0 ,

γµνǫ0 + iσi
µνρiγ5ǫ1 = 0 ,

(2.16)

that can be solved consistently: they concluded that for a generic curve on S3 the Wilson

loop preserves 1/16 of the original supersymmetries. For special curves, when there are

extra relations between the coordinates and their derivatives, there will be more solutions

and the Wilson loops will preserve more supersymmetry. A particular interesting case is

when the loop lies on a S2: it is possible to show that these Wilson loops are generically

1/8 BPS and the first perturbative contribution can be explicitly evaluated [41] as

〈WS2〉 = 1 + g2N
A1A2

2A2
+ O(g4) , (2.17)
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where A is the area of the sphere and A1,2 are the areas determined by the loop. This result

deserves some comment: first of all we notice that there is no dependence from the radius of

S2, the scale length decoupling consistently with conformal invariance. More intriguingly

we see that the overall result does not depend on the particular shape of the loop, but just

on the area of the two sectors A1, A2: it suggests a sort of invariance under area preserving

transformations. This fact and the appearance of the peculiar combination
A1A2

A2
resemble

a similar result for pure Yang-Mills theory on the two-dimensional sphere [54]. In that case

the theory is completely solvable [55] and the exact expression for the ordinary Wilson

loop is available [56, 57]: restricting the full answer to zero-instanton sector, following the

expansion of [42], one obtains

〈W0〉 =
1

N
L1

N−1

(

g2
2d

A1A2

A

)

exp

[

−g2
2d

2

A1A2

A

]

, (2.18)

where L1
N−1(x) is a Laguerre polynomial. In the decompactification limit this expression

exactly coincides with the perturbative calculation of [58], performed by using the light-

cone gauge and the Wu-Mandelstam-Liebbrandt prescription [59 – 61], showing that truly

non perturbative contributions are not captured in this formulation of the theory. Let

us notice that this result is equal to the expectation value of the circular Wilson loop

in the gaussian Hermitian matrix model (2.8), after a rescaling of the coupling constant.

After identifying the two-dimensional coupling constant g2
2d with the four-dimensional one

through g2
2d = −g2/A, we see that the first order expansion of (2.18) coincides with (2.17):

the authors of [41] have therefore conjectured that the 1/8 BPS Wilson loops constructed

on S2 can be computed exactly, leading to the two-dimensional result and claimed more

generally the equivalence with the computation of Wilson loop on YM2 on the sphere.

We will try in the following sections to substantiate this conjecture computing higher-

order corrections to their results.

3. Two-loop expansion for supersymmetric loops on S2

In this section we discuss the expansion at the first two perturbative orders of supersymmet-

ric Wilson loops lying on S2. In order to perform a quantum analysis in Feynman gauge, we

will need to adopt a regularization procedure, since, as we will see, divergent diagrams could

appear in intermediate steps of the computations. We choose the familiar dimensional re-

duction, consisting in considering N = 4 SYM in 2ω dimensions as a dimensional reduction

of N = 1 SYM in ten dimensions. The final results will turn out nevertheless finite, even

in presence of cusps on the contour: we will demonstrate explicitly this property up two

loops. In so doing we will derive a compact expression for the g4 contribution of interacting

diagrams, that will allow us to perform plain numerical computations in section 4.

The first ingredient in our computations is the effective propagator appearing in the

perturbative expansion of the Wilson loop i . e the analogous of (2.9), taking into account

the explicit couplings of vectors and scalars to the countour. We shall adopt the short
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notation xµ
i ≡ xµ(ti) and consequently ẋµ

i ≡ ẋµ(ti) and we easily derive

∆ab(t1, t2) = 〈(iAa
µ(x1)ẋ

µ
1 + |ẋ1|ΘI(t1)Φ

a
I(x1))(iA

b
ν(x2)ẋ

ν
2 + |ẋ2|ΘJ(t2)Φ

b
J(x2))〉

= δab Γ(ω − 1)

4πω

|ẋ1||ẋ2|Θ(t1) · Θ(t2) − (ẋ1 · ẋ2)

((x1 − x2)2)ω−1
. (3.1)

The Wilson loops (2.15) are obtained by choosing |ẋi|ΘI(ti) = −σs
µν ẋ

µ
i xν

i M
s
I , where σi

µν

are the ’t Hooft symbol and M s
I is a rectangular matrix, satisfying M r

IM
s
I = δrs and we

have chosen an S3 with unit radius. For this choice, we find

|ẋ1||ẋ2|Θ(t1) · Θ(t2) =M r
IM

s
I(σ

s
µν ẋµ

1xν
1)(σ

r
ρσẋρ

2x
σ
2 ) = (σr

µν ẋµ
1xν

1)(σ
r
ρσẋρ

2x
σ
2 )

=(ẋ1 · ẋ2)(x1 · x2) − (x1 · ẋ2)(x2 · ẋ1) + ǫµναβ ẋµ
1xν

1ẋ
α
2 xβ

2 ,
(3.2)

where we have exploited the following relation which holds for the ’t Hooft symbols

σi
µνσ

i
αβ = δµαδνβ − δµβδνα + ǫµναβ . (3.3)

This, in turn, implies that our effective propagator has the simple form

∆ab(t1, t2)=δab Γ(ω − 1)

4πω

(ẋ1 ·ẋ2)[(x1 ·x2)−1]−(x1 ·ẋ2)(x2 ·ẋ1)+ǫµναβ ẋµ
1xν

1ẋ
α
2 xβ

2

((x1 − x2)2)ω−1
. (3.4)

Since we shall be mainly interested in contours lying on a unit sphere S2 inside the original

S3 the last term in (3.4) identically vanishes: in this case the four vector x1, ẋ1, x2, ẋ2 cannot

be in fact linearly independent. We are then left with a reduced propagator of the form

∆ab(t1, t2)=δab Γ(ω − 1)

4πω

(ẋ1 ·ẋ2)[(x1 ·x2)−1]−(x1 ·ẋ2)(x2 ·ẋ1)

((x1 − x2)2)ω−1
. (3.5)

In order to investigate the singular behavior of the supersymmetric Wilson loop, it is

instructive to study the effective propagator when t1 approaches t2, i.e. when the two

points on the contour are about to collide: it is convenient to rearrange ∆ab(t1, t2) as follows

∆ab(t1, t2) =δab Γ(ω − 1)

4πω

[

1

2
(ẋ1 ·ẋ2)((x1 − x2)

2)2−ω+
(x1 − x2) · ẋ2(x1 − x2) · ẋ1

((x1 − x2)2)ω−1

]

. (3.6)

Let us consider the case of smooth loops: the above expression (3.6) is composed by two

contributions, that are of the same order in the coincidence limit. A straightforward Taylor-

expansion gives indeed for (3.6) the following leading behavior Γ(ω − 1)(|ẋ1|2)3−ω(t1 −
t2)

4−2ω and it is completely finite when 1 < ω ≤ 2. An analogous result holds for smooth

loops with the usual constant coupling, where ΘI is a constant unit vector in R
6, as

first shown in [26]. In this last case divergencies at coinciding points could appear when

considering loops endowed with cusps and are related to the famous ”cusp anomaly”, as

discussed in [62]. We can examine the non-smooth loop in our case as well: here the

situations is more subtle. Let x1 and x2 be the extreme of the propagator approaching

the cusp from the left and the right respectively. If the cusp is located at x = x0, we can

always choose the parametrization of the contour such that x1 = x0 + t1n1 + O(t21) and
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Figure 1: One-loop correction to the gluon and the scalar exchange.

x2 = x0 + t2n2 + O(t22) with n2
1 = n2

2 = 1 and t1, t2 ≥ 0. Then we find that the leading

behavior of ∆ab(t1, t2) when both t1 and t2 are close to zero is given just by the second term

∆ab(t1, t2) ∼δab Γ(ω − 1)

4πω

2(1 − (n1 · n2)
2)t1t2

(t21 + t22 − 2t1t2(n1 · n2))ω−1
. (3.7)

A simple power counting argument shows that this object is integrable around (t1, t2) =

(0, 0) for all the values of ω less than 3 and in particular for ω = 2. This regular behavior

entails therefore an important difference between the family of loops with the new scalar

couplings and the ones previously considered: no singular contribution is associated here to

the presence of the cusp. In some way the celebrated cusp anomaly appears to be smoothed

away at the leading order when considering this class of supersymmetric Wilson loop.

Actually we shall see that this also occurs at two loops and probably it is true at all orders.

We are ready to list and to analyze the different contributions in the expansion up to the

order g4. We shall perform firstly our analysis for a generic contour and subsequently, in

the next section, we shall consider the specific example of spherical sector whose boundary

is two longitudes of the sphere S2.

At the order g2, since no singular behavior is present at coincident points we can write

the relevant integral directly in four dimensions. Denoting the loop with C, we find that

the single-exchange contribution is given by

W1(C) =
g2N

8π2

∮

C
dt1dt2

(ẋ1 ·ẋ2)[(x1 ·x2)−1]−(x1 ·ẋ2)(x2 ·ẋ1)

(x1 − x2)2
≡ g2N

8π2
Σ2[C]. (3.8)

At the order g4, the different contributions are not separately finite and we have to

introduce the regularization procedure. Firstly, we shall consider the effect of the one

loop correction to the effective propagator (3.5). The relevant diagrams are schematically

displayed in figure 1 and in the following we shall refer to them as the bubble diagrams. The

value of the contribution in Feynman gauge can be easily computed with the help of [26],

where the one-loop correction to the gauge and scalar propagator has been calculated. The

final result is

S2 = − g4(N2 − 1)
Γ2(ω − 1)

27π2ω(2 − ω)(2ω − 3)
×

×
∮

dτ1 dτ2
(ẋ1 ·ẋ2)[(x1 ·x2)−1]−(x1 ·ẋ2)(x2 ·ẋ1)

[

(x(1) − x(2))2
]2ω−3 ≡

≡− g4(N2 − 1)
Γ2(ω − 1)

27π2ω(2 − ω)(2ω − 3)
Σω[C].

(3.9)
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Figure 2: Spider-diagrams: gauge and scalar contribution

Apart from the different power in the denominator, the integrand is identical to (3.8). The

coefficient instead exhibits a pole in ω = 2, which keeps track of the divergence in the loop

integration.

The next step, at this order, is to investigate the so-called spider diagrams, namely the

perturbative contributions coming from the gauge vertex A3 and the scalar-gauge vertex

φ2A (see figure 2). We have to compute

S3 =
g3

3N

∮

dt1dt2dt3η(t1t2t3)〈Tr[A(t1)A(t2)A(t3)]〉0, (3.10)

where the short notation A(tℓ) stands for the relevant combination

iAa
µ(xℓ)ẋ

µ
ℓ − σs

µν ẋ
µ
ℓ xν

ℓ M
s
IΦ

a
I(xℓ)

and

η(t1, t2, t3) = θ(t1 − t2)θ(t2 − t3) + cyclic permutations. (3.11)

After a simple, but tedious computation, in Feynman gauge S3 takes the form

S3 =
g4(N2 − 1)

4

∮

dt1dt2dt3 ǫ(t1, t2, t3)×

× [(ẋ1 ·ẋ3)[(x1 ·x3)−1]−(x1 ·ẋ3)(x3 ·ẋ1)] ẋ
µ
2

∂I1(x3 − x1, x2 − x1)

∂xµ
3

,

(3.12)

where we have introduced the symbol

ǫ(t1, t2, t3) = η(t1, t2, t3) − η(t2, t1, t3),

that is a totally antisymmetric object in the permutations of (t1, t2, t3) and its value is 1

when t1 > t2 > t3. The quantity I1(x, y)1 is defined as the following integral in momentum

space

I1(x, y) ≡
∫

d2ωp1d
2ωp2

(2π)4ω

eip1x+ip2y

p2
1p

2
2(p1 + p2)2

. (3.13)

It is quite important, at this point, to understand the potential divergences arising in (3.12)

when ω → 2: their appearance originates directly from the integration over the contour.

In fact. since the integral (3.13) is finite and regular for x, y 6= 0, singularities can only

1
I1(x, y) is evaluated and its properties are discussed in details in appendix B.
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arise in the contour integration when two of the xi collide. In that case, a pole at ω = 2

appears in the expression of I1(x, y): for x1 = x2 one finds (see app. B)

I1(x3 − x1, 0) =
Γ2(ω − 1)

(2ω − 3)(2 − ω)

1

64π2ω [(x1 − x3)2]
2ω−3 . (3.14)

The same behavior occurs when x1 = x3 or x2 = x3 since I1 is totally symmetric in

the exchange of the xi: we observe three different regions, namely [(x1 ≃ x2), (x1 ≃
x3), (x2 ≃ x3)], which are potential sources of divergences. Actually, the situation is bet-

ter than what one would naively expect: the true singularity at ω → 2 appears just

in a single region, for the following reasons. One observes that the divergent behav-

ior at x1 = x3 becomes integrable because of the presence of the kinematical pre-factor

(ẋ1 · ẋ3)[(x1 · x3) − 1] − (x1 · ẋ3)(x3 · ẋ1), inherited by the vector/scalar coupling, which

nicely vanishes in this limit. The contribution coming from the region x1 ≃ x2 becomes

instead ineffective due to the derivative with respect to x3, when acting on I1. The only

dangerous singularity appears when x3 approaches x2.

A similar pattern for the divergences was discussed in [26] for the usual Wilson-Maldacena

loop (the loop with constant ΘI). The authors made the crucial observation that the

residual divergence at x2 ≃ x3 is exactly compensated by a contribution coming from the

one-loop correction to the effective propagator (see figure 1, bubble diagram). A subtle

cancelation among singularities in the contour integration and the loop integration yields a

completely finite result for the Wilson-Maldacena loop at the fourth-order in perturbation

theory, in the case of smooth circuits. This nice conclusion suggests that the divergences

appearing in each diagram are indeed gauge artefacts and do not have a physical meaning,

canceling out in the final result. In particular, one could expect that all the diagrams can

be made separately finite with a suitable choice of gauge: in appendix A, as an example,

it is shown that the light-cone gauge does enjoy this property for smooth circuits lying in

the plane orthogonal to light-cone directions.

The situation is analogous for the class of supersymmetric Wilson-loop we are considering.

Firstly, we shall show that we can explicitly factor out the divergent part of the spider

diagram and that it has the same form of the bubble contribution. This can be achieved

by rearranging the original expression (3.12) for S3 with the help of this trivial identity:

0 =
g4(N2 − 1)

4

∮

dt1dt2dt3
d

dt2

[

ǫ(t1, t2, t3) ((ẋ1 ·ẋ3)((x1 · x3) − 1)−

− (x1 ·ẋ3)(x3 ·ẋ1)) I2(x3 − x2, x1 − x2)
]

.

(3.15)

The definition and the properties of the function I2 are listed in appendix B. With this

addition, the expression can be rearranged by decomposing S3 as the sum of two different

contributions, S3 = A + B, as follows

S3 =
g4(N2 − 1)

4

∮

dt1dt2dt3ǫ(t1, t2, t3)[(ẋ1 ·ẋ3)[(x1 ·x3)−1]−(x1 ·ẋ3)(x3 ·ẋ1)]×

× ẋµ
2

[

∂I1(x3 − x1, x2 − x1)

∂xµ
3

− ∂I2(x3 − x1, x2 − x1)

∂xµ
2

]















(A)−
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−g4(N2 − 1)

2

∮

dt1dt3 ((ẋ1 ·ẋ3)((x1 · x3) − 1) − (x1 ·ẋ3)(x3 ·ẋ1))×

×
[

I2(x3 − x1, x3 − x1) − I2(x3 − x1, 0)
]

,











(B) (3.16)

where we have used

d

dt2
ǫ(t1, t2, t3) = 2(δ(t2 − t3) − δ(t1 − t2)). (3.17)

We start by focussing our attention on B: it has exactly the same structure of the result

S2, produced by the bubble diagrams, as can be easily inferred looking at the kinematical

prefactor. We are led to collect all these contributions and sum them together. Exploiting

the explicit behavior of I2(x, y) for y = x and y = 0, as given in appendix B, we can write

the sum of all bubble-like contributions Btot as

Btot =S2 + B =
g4

(

N2 − 1
)

128π2ω−1 sinπω

(

Γ(ω − 2)

Γ(3 − ω)
− 2Γ(2ω − 4)

)

Σω[C] =

= − g4
(

N2 − 1
)

384π2
Σ2[C] + O ((ω − 2)) .

(3.18)

In other words, when we sum the term B present in (3.16) to the original one-loop correction

coming from the bubble diagrams, we obtain a completely finite result Btot, where the pole

in ω = 2 has disappeared. Since the contour integration is also finite in this limit, we can

consistently pose ω = 2 in (3.18).

The finiteness of (3.18) clearly hints that also the combination A appearing in (3.16)

is free of divergencies, as ω approaches two: this is indeed the case. In appendix B we show

that contribution A can be rewritten as follows, once the derivatives have been explicitly

taken

A = −g4(N2 − 1)Γ(2ω − 2)

128π2ω(ω − 1)

∮

dt1dt2dt3ǫ(t1, t2, t3)[(ẋ3 ·ẋ1)[(x1 ·x3)−1]−

− (x1 ·ẋ3)(x3 ·ẋ1)]

∫ 1

0
dα

[α(1 − α)]ω−1ẋ2 · (x1 − x3) 2F1(1, 2ω − 2;ω; ξ)

(α(x3 − x2)2 + (1 − α)(x2 − x1)2)2ω−2
.

(3.19)

Here we have denoted with ξ the following combination of the original coordinates

(x3 − x1 − α(x2 − x1))
2

α(x3 − x2)2 + (1 − α)(x2 − x1)2
,

which appears in the argument of the hypergeometric function 2F1(1, 2ω − 2;ω; ξ). The

integral (3.19) is nicely convergent in the limit ω → 2, in fact by setting ω = 2 we find

A =
g4(N2 − 1)

128π4

∮

dt1dt2dt3ǫ(t1, t2, t3)
(ẋ1 ·ẋ3)[(x1 ·x3)−1]−(x1 ·ẋ3)(x3 ·ẋ1)

(x3 − x1)2
×

× ẋ2 · (x3 − x1)

∫ 1

0
dα

1

α(x3 − x2)2 + (1 − α)(x2 − x1)2
=

= − g4(N2 − 1)

128π4

∮

dt1dt2dt3ǫ(t1, t2, t3)
(ẋ1 ·ẋ3)[(x1 ·x3)−1]−(x1 ·ẋ3)(x3 ·ẋ1)

(x3 − x1)2
×

× ẋ2 · (x3 − x1)

(x3 − x2)2 − (x2 − x1)2
log

(

(x2 − x1)
2

(x3 − x2)2

)

.

(3.20)
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We remark that the original power-like singularity for x2 → x3 has disappeared and it has

been replaced by a milder logarithmic one, which is integrable both for smooth and cusped

loops.

We can actually go further and extract from (3.20) another bubble-like contribution

that cancels completely Btot! With the help of the following identity

(x3 − x1) · ẋ2

(x3 − x2)2 − (x1 − x2)2
log

(

(x2 − x1)
2

(x3 − x2)2

)

=
1

2

d

dt2

[

Li2

(

1 − (x2 − x1)
2

(x3 − x2)2

)

+

+
1

2

(

log

[

(x3 − x2)
2

(x3 − x1)2

])2
]

+
(x3 − x2) · ẋ2

(x3 − x2)2
log

(

(x2 − xa1)
2

(x3 − x1)2

)

,

(3.21)

we can integrate by part (3.20). We arrive to the following expression

A =
g4(N2 − 1)

384π2
Σ2[C]+

+
g4(N2 − 1)

128π4

∮

dt1dt2dt3ǫ(t1, t2, t3)
(ẋ1 ·ẋ3)[(x1 ·x3)−1]−(x1 ·ẋ3)(x3 ·ẋ1)

(x3 − x1)2
×

× (x3 − x2) · ẋ2

(x3 − x2)2
log

(

(x2 − x1)
2

(x3 − x1)2

)

.

(3.22)

We see that the first term exactly cancels Btot and the only surviving contribution from the

spider and the bubble diagrams can be written as a relatively simple convergent integral

Itot =
g4(N2 − 1)

128π4

∮

dt1dt2dt3ǫ(t1, t2, t3)
(ẋ1 ·ẋ3)[(x1 ·x3)−1]−(x1 ·ẋ3)(x3 ·ẋ1)

(x3 − x1)2
×

× (x3 − x2) · ẋ2

(x3 − x2)2
log

(

(x2 − x1)
2

(x3 − x1)2

)

.

(3.23)

It is remarkable that this expression holds for any kind of loop on S2, both cusped and

smooth, and being free of divergencies is amenable, if necessary, to a plain numerical eval-

uation, once the contour is specified. An analogous representation for planar contours with

a constant ΘI coupling is given in appendix A: in the circular case Itot is easily seen to

vanish by simple symmetry arguments, recovering without tears the result of [26].

This is not of course the end of story: we have still to consider the double-exchange dia-

grams to the perturbative expansion of the Wilson loop, namely we have to analyze the

contribution

g4

N

∮

C
dt1dt2dt3dt4θ(t1 − t2)θ(t2 − t3)θ(t3 − t4)〈Tr[A(t1)A(t2)A(t3)A(t4)]〉0. (3.24)

Recalling that the effective propagator has the color structure ∆ab(t1, t2) = δab∆(t1, t2),

the relevant Green function can be written as

〈Tr[A(t1)A(t2)A(t3)A(t4)]〉0 =
1

2
Tr([T b, T a][T b, T a])∆(t1, t3)∆(t2, t4)+

+ Tr(T aT aT bT b) [∆(t1, t2)∆(t3, t4) + ∆(t1, t3)∆(t2, t4) + ∆(t1, t4)∆(t2, t3)] .
(3.25)
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The term multiplying Tr(T aT aT bT b) is symmetric in the exchange of all the ti and therefore

is insensitive to the path-ordering. It simply yields 1/2 the square of the single-exchange

contribution

1

2

(

g2N

8π2

∮

C
dt1dt2

(ẋ1 ·ẋ2)[(x1 ·x2)−1]−(x1 ·ẋ2)(x2 ·ẋ1)

(x1 − x2)2

)2

. (3.26)

This simple manipulation expresses the trivial exponentiation of the so-called abelian

part of the Wilson loop. The remaining contribution, which is proportional to

Tr([T b, T a][T b, T a]), is usually called the maximally non-abelian part and it is the new

ingredient in the double-exchange contribution. We are left to compute the integral

− g4(N2 − 1)Γ2(ω − 1)

64π2ω

∮

C
dt1dt2dt3dt4θ(t1 − t2)θ(t2 − t3)θ(t3 − t4)×

× (ẋ1 ·ẋ3)[(x1 ·x3)−1]−(x1 ·ẋ3)(x3 ·ẋ1)

((x1 − x3)2)ω−1
× (ẋ4 ·ẋ2)[(x4 ·x2)−1]−(x4 ·ẋ2)(x2 ·ẋ4)

((x4 − x2)2)ω−1
.

(3.27)

This contribution is of course finite and we can set safely again ω = 2.

4. The cusped loop on S2

In the present section we will provide a fourth-order evidence that the supersymmetric Wil-

son loops lying on S2 are actually equivalent to the usual, non-supersymmetric Wilson loops

of Yang-Mills theory on a 2-sphere in the Wu-Mandelstam-Leibbrandt prescription [59 –

61], as conjectured in [41] on the basis of a one-loop calculation. We have not been able

to show this equivalence in general: one should compute (3.23) and (3.27) for a generic

contour on S2 and compare the total result with the expansion of (2.18) at order g4 (the

abelian part of the Wilson loop being trivially recovered). This task seems particulary

difficult, especially because we do not see any simple way in which (3.23) and (3.27) could

generate something proportional to (Σ2[C])2. In the parent circular case, that corresponds

to a contour winding the equator of S2, two obvious simplifications appear: the vanishing

of (3.23) and the constant behavior of the effective propagator, that allows an easy com-

putation of (3.27). For a generic loop on S2 both properties seem to disappear, at least in

Feynman gauge, and the matrix model result could be recovered only through a delicate

interplay among interacting and double-exchange contributions. We are led therefore to

check, as first instance, the conjecture against a particular class of loops, for which the

calculation of (3.23) and (3.27) is relatively easy. We will focus on a particular family of

1/4 BPS Wilson loops that can be obtained as follows. Consider a loop made of two arcs

of length π connected at an arbitrary angle δ, i.e. two longitudes on the two-sphere: an

explicit parametrization is

x(t) =















(

− 2t
1+t2 , 0, 1−t2

1+t2

)

for −∞ < t ≤ 0

(

2t
1+t2 cos δ, 2t

1+t2 sin δ, 1−t2

1+t2

)

for 0 ≤ t < ∞
(4.1)
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Figure 3: Stereographic Projection of the “wedge”.

HaL HbL HcL

Figure 4: Single-exchange diagrams

This path starts from the south pole of the sphere (0, 0,−1) for (t = −∞). When t

increases, we move along a meridian φ = 0 up to the north pole (0, 0, 1), which is reached

for (t = 0). From the north pole, we move back to the south pole along the meridian φ = δ

and we again reach the south pole when t = +∞. In other words, this path is the border

of a spherical sector whose angular width is given by δ. Notice that our parametrization

for the contour is nothing else but its stereographic projection on the plane. After this

projection, our contour appears as an infinite angular sector (see figure 3). We will call our

contour the wedge. Let us start by discussing, as a warm up, the lowest order contribution.

For this kind of loop the single exchange splits in three sub-diagrams: The diagram (a)

and (b) are equal, since we cannot distinguish the two longitudes. We have that

(a) + (b) = 2(a) =
g2N

2π2

∫ 0

−∞
dt1

∫ t1

−∞
dt2

1
(

t21 + 1
) (

t22 + 1
) =

g2N

16
. (4.2)

The diagram (c) is given by

(c) = −g2N

4π2

∫ ∞

0
dt1

∫ ∞

0
dt2

−2t1t2 +
(

t1
2 + t2

2
)

cos(δ)

(t12 + 1) (t22 + 1) (t12 + t22 − 2t2t1 cos(δ))
, (4.3)

where we have performed the change of variable t2 7→ −t2. Next we pose t1 = t2w and we

integrate over t2. Then we get2

(c) = −g2N

4π2

∫ ∞

0
dw

log(w)

w2 − 1

(
(

w2 + 1
)

cos(δ) − 2w)

(w2 + 1 − 2w cos(δ))
= −g2N

4π2

(

π2

4
− 1

2
(2π − δ)δ

)

. (4.4)

2The integral (4.4) can be computed with the Residue theorem applied to the function

(
`

w2 + 1
´

cos(δ) − 2w)

(w2 + 1 − 2w cos(δ))

1

w2 − 1

„

i log2(w)

4π
+

log(w)

2

«

for a contour that encircles the cut of the logarithm. The cut is taken along the positive real axis.
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HaL

2 431

HbL

2

4
3

1

Figure 5: Double exchange diagrams: type (I)

Summing the three different contributions, we find the first-order contribution

W1 = (a) + (b) + (c) =
g2N

8π2
(2π − δ)δ, (4.5)

consistently with the general result of [41] and the related conjecture,once one notes that

A1A2/A
2 = δ(2π − δ)/4π2.

The next step is to tackle the double-exchange diagrams, as first contributions at order

g4. Since the abelian part of these diagrams is given by 1/2 the square of the contribution

of order g2, as we have seen in the previous section, we shall focus our attention only to

the maximally non-abelian part. The relevant diagrams can be separated in three different

families, according to the number of propagators with both ends on the same edge of the

circuit. To begin with, we have the case of diagrams of figure 5. The contributions of

diagram (Ia) and (Ib) are equal. Their value is

(I) =(Ia) + (Ib) = 2(Ib) =

= − g4(N2 − 1)

8π4

∫ ∞

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3

∫ t3

0
dt4

1

(t12 + 1) (t22 + 1) (t32 + 1) (t42 + 1)
=

= − g4(N2 − 1)

3072
.

(4.6)

Consider now the second family of diagrams represented in figure 6. Again the two diagrams

are equal and we can write

(II) =(IIc) + (IId) = 2(IIc) =

=
g4(N2 − 1)

8π4

∫ ∞

0
dt1

∫ 0

−∞
dt2

∫ t2

−∞
dt3

∫ t3

−∞
dt4

cos(δ)t2
1
+2t3t1+cos(δ)t2

3

(t2
1
+1)(t2

2
+1)(t2

3
+1)(t2

1
+2 cos(δ)t3t1+t2

3)(t2
4
+1)

=

=
g4(N2 − 1)

8π4

∫ ∞

0
dt1

∫ 0

−∞
dt3

∫ 0

t3

dt2

∫ t3

−∞
dt4

cos(δ)t2
1
+2t3t1+cos(δ)t2

3

(t2
1
+1)(t2

2
+1)(t2

3
+1)(t2

1
+2 cos(δ)t3t1+t2

3)(t2
4
+1)

.

(4.7)

The integration over t2 and t4 are trivial and can be performed analytically. We have

(II) =
g4(N2 − 1)

8π4

∫ ∞

0
dt1

∫ 0

−∞
dt3

tan−1
(

1
t3

)

tan−1 (t3) (cos(δ)(t21 + t23) + 2t3t1)
(

t21 + 1
) (

t23 + 1
) (

t21 + 2cos(δ)t3t1 + t23
) ≡

≡g4(N2 − 1)

8π4
D1.

(4.8)

We could now perform the integration over t1 since the integrand is a rational function of

– 17 –



J
H
E
P
0
6
(
2
0
0
8
)
0
8
3

HcL

2 43

1

HdL

3

4

1

2

Figure 6: Double exchange diagrams: type (II)
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Figure 7: Plot of D1 as a function of δ in the range [0, π]. We focus our attention to this interval

because all the integrals possess the symmetry δ 7→ 2π − δ.

this variable, but this is not particularly convenient. We would end up indeed with a func-

tion of t1 that we cannot integrate analytically, but only numerically. For this reason, we

start our numerical analysis already at the level of D1. The result as a function of δ is given

in figure 7. We consider finally the last diagram contributing to the double-exchange. It is

schematically drawn figure 8. The actual integral to evaluate for this diagram is given by

(III) = −g4(N2 − 1)

16π4

∫ ∞

0
dt1

∫ ∞

0
dt4

∫ t1

0
dt2

∫ t4

0
dt3×

× ((t12+t32) cos(δ)−2t1t3)((t22+t42) cos(δ)−2t2t4)
(t12+1)(t22+1)(t32+1)(t42+1)(t12−2t3 cos(δ)t1+t32)(t22−2t4 cos(δ)t2+t42)

≡ −g4(N2 − 1)

16π4
D2,

(4.9)

where we have performed the following change of variables t3 7→ −t3 and t4 7→ −t4
and then we have rearranged the order of the different integrations. In this form, the

integration over t2 and t3 can be performed analytically, while the residual two integrations

can be done numerically. The final result for D2 is plotted in figure 9 .

Having evaluated the double-exchange diagrams, we are left to consider the effective con-

tribution due to the interactions and summarized in the result (3.23), found in section 3.

In order to write the actual integrals we have to compute, we distinguish two cases: (A)

when the legs of the vertex are attached to the same edge of the circuit (see figure 10 )

and (B) when the legs of the vertex are not attached to the same edge of the circuit (see

figures 11, 12 ). The diagrams belonging to the family (A) vanish. To convince the reader
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Figure 8: Double-exchange diagrams: type (III)
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Figure 9: Plot of D2 as a function of δ in the range [0, π].

(a) (b)

Figure 10: Diagrams of type (A)

let us consider , for example, the first of the two diagrams that it is given by

g4(N2 − 1)

64π4

∫ 0

−∞
dt1

∫ 0

−∞
dt2

∫ 0

−∞
dt3ǫ(t1, t2, t3)

(t2t3 + 1) log

(

(t1−t2)2(t32+1)
(t22+1)(t1−t3)2

)

(t12 + 1) (t22 + 1) (t2 − t3) (t32 + 1)
. (4.10)

This integral is equal to zero because the integrand is antisymmetric in the interchange

(t2, t3), while the integration region is symmetric. We are finally left with the diagrams

belonging to the family (B). We have six diagrams: (1) three with two legs of the vertex

attached to first edge of the spherical wedge and (2) three with two legs attached to second

edge. The contribution of the two classes is equal because our loop is symmetric under

reflection with respect the longitude φ = δ/2. We shall consider the first class only and we
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(a) (c)(b)32

1

1 3

2 3

1 2

Figure 11: Diagrams of type (B): set(1)

(b)(a) (c)

1

2

3 2 1

3

21

3

Figure 12: Diagrams of type (B): set (2)

will multiply the result by two. Then the total contribution of the interaction is given by

the following integral

Itot =
g4(N2 − 1)

64π4

∫ ∞

0
dt1dt2dt3 [(sgn(t3 − t2)V1 + sgn(t1 − t3)V2 + sgn(t2 − t1)V3] ≡

≡g4(N2 − 1)

64π4
Itot,

(4.11)

where

V1 =
2(t2t3+1)((t12+t32) cos(δ)−2t1t3) log

 

(t3
2+1)(t1

2
−2t2 cos(δ)t1+t2

2)
(t2

2+1)(t1
2
−2t3 cos(δ)t1+t3

2)

!

(t12+1)(t22+1)(t3−t2)(t32+1)(t12−2t3 cos(δ)t1+t32)

V2 =
2(t2(t32−1)−(t22−1)t3 cos(δ)) log

 

(t3
2+1)(t1

2
−2t2 cos(δ)t1+t2

2)
(t2

2+1)(t3−t1)2

!

(t12+1)(t22+1)(t32+1)(t22−2t3 cos(δ)t2+t32)

V3 =
2((t22−1)t3 cos(δ)−t2(t32−1))((t12+t32) cos(δ)−2t1t3) log

 

(t2−t1)2(t3
2+1)

(t2
2+1)(t1

2
−2t3 cos(δ)t1+t3

2)

!

(t12+1)(t22+1)(t32+1)(t12−2t3 cos(δ)t1+t32)(t22−2t3 cos(δ)t2+t32)
.

(4.12)

If we expand the logarithms in this expression, we can always perform one integration

analytically: the argument of each logarithm always depends only on two of the three

variables. It turns out that one of the three integrations always reduces to find the primitive

of a rational function. As we have done before, the remaining two integrations can be easily

performed numerically and the result is given in figure 13 . We can finally collect all the

results to obtain the maximal nonabelian contribution at order g4:

W mnb
2 = − g4(N2 − 1)

3072
+

g4(N2 − 1)

8π4
D1 −

g4(N2 − 1)

16π4
D2 +

g4(N2 − 1)

64π4
Itot =

= − g4(N2 − 1)

8π4

(

π4

384
−D1 +

1

2
D2 −

1

8
Itot

)

≡ −g4(N2 − 1)

8π4
R.

(4.13)

– 20 –



J
H
E
P
0
6
(
2
0
0
8
)
0
8
3

0 0.5 1 1.5 2 2.5 3
∆

-1.5

-1.25

-1

-0.75

-0.5

-0.25

0

I
t
o
t

Figure 13: Plot of Itot as a function of δ in the range [0, π].
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Figure 14: Plot of R as a function of δ in the range [0, π].

The plot for R is given in figure 14. We can easily perform a fit of the numerical result R

with a polynomial of the following form P (δ) = c0δ
2(2π−δ)2. This particular dependence is

necessary in order to be in agreement with the conjectured relation with the zero-instanton

sector of pure Yang-Mills theory on the sphere. The coefficient c0 is easily determined and

it is 1/(48). The difference between R and the polynomial P is less than 10−8 over the

whole range of the value of δ.

Thus we have

W mnb
2 = − g4(N2 − 1)

8 · 48π4
δ2(2π − δ)2 = −g4(N2 − 1)

384π4
δ2(2π − δ)2, (4.14)

that exactly coincides with the second order expansion of the matrix model result (2.18),

after the inclusion of the abelian contribution.

We have checked therefore the conjecture at two loops, at least for this particular

class of loops. Now some remarks are in order: first of all we notice that in Feynman

gauge double-exchange diagrams and the interactions conspire to reproduce the matrix

model expression. This has to be contrasted with the circular Wilson loop case, where

interactions vanish and simple exchange diagrams carry over the exact result. This suggests
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that probably there are more clever gauge choice to unveil the birth of the matrix model,

may be contour-dependent. The second observation is that our formulae allow easily to

perform explicit computations for other contours: all the integrals are in fact finite, and

it is just matter of patience to put them on computer and evaluate them numerically. We

remark again that in spite of the presence of the cusp, these supersymmetric Wilson loops

are indeed finite.

5. Conclusions

In this paper we have studied at quantum level a family of supersymmetric Wilson loops in

N = 4 SYM which have been proposed in [41]. The contours are restricted to an S2 sub-

manifold of space-time and then for a curve of arbitrary shape a prescription for the scalar

couplings guarantees that the resulting loop is globally supersymmetric. We have shown

that no divergence arises in the perturbative expansion, also when non-smooth ”cusped”

curves are considered and we derived a general compact representation for the contribution

of interactions at order g4. Finally we presented a two-loop computation, supporting

the evidence that this class of loops, that in general preserve four supercharges, may be

described by a perturbative calculation in two-dimensional bosonic Yang-Mills theory on

S2. We chose a “wedge” contour and we performed the necessary analytical and numerical

evaluation to find consistency with the conjecture proposed in [41]. The agreement with

the prediction of the matrix model, describing the zero-instanton sector of Yang-Mills

theory on S2, is achieved in Feynman gauge after a non trivial conspiration of ladder and

interacting diagrams: in this sense the situation here is quite different from the familiar

circular Wilson loop, where exchange diagrams alone produce the correct matrix integral.

Many open questions remain of course to be answered: while our two-loop calculation

points towards the validity of the correspondence between supersymmetric Wilson loops

on S2 and the gaussian matrix model of zero-instanton YM2, further checks, involving

other contours and, may be, higher perturbative orders, are certainly welcome. More am-

bitiously one would like to generalize the localization approach on S4, elaborated in [40]

for the circular loop, to the present situation, where a different amount of supersymme-

try is preserved. In particular it would be important to understand the contributions of

instantons in this case: instantons have been claimed to decouple in fact when the con-

tour is a circle [40]. Another direction of work is to study, in this context, correlators of

Wilson loops, to understand if the matrix model/two-dimensional Yang Mills description

still holds: in the same spirit it would be also interesting to study the correlators with

chiral primary operators, as done in [64] for a different class of loops. We end by observing

that supersymmetry protects, in this case, cusped loops from being divergent: in a sense

the BPS property smooths away the cusp anomalous behavior. It would be intriguing to

understand better this last point and find, if any, connections among these exact results

and the recent discovered perturbative properties of scattering amplitudes of N = 4 SYM.

All these directions are currently under investigations.
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A. Light-cone analysis of planar Maldacena-Wilson loop

Contributions to the Wilson-loop at O(g4) in light-cone gauge. In this appendix

we present an analysis of the contributions at O(g4) to a space-like planar Maldacena-

Wilson loop in light-cone gauge. We shall show that the diagrams are separately finite and

no divergence arises from the integration over a smooth circuit.

Let us briefly recall some basic definitions and notations.

The light-cone gauge is characterized by the introduction of a light-cone vector

nµ, n2 = 0 leading to the gauge condition nµAµ = 0, Aµ being the vector potential (internal

indices are understood). The free vector propagator in momentum space takes the form

Dµν(p) =
1

p2 + iǫ

[

gµν − nµpν + pµnν

np + iǫn̂p

]

,

n̂ being a null vector (n̂2 = 0) such that nn̂ = 1. The usual choice is nµ = 1√
2
(1, 0, 0,−1)

and n̂µ = 1√
2
(1, 0, 0, 1). The first term in the propagator corresponds to its expression in

Feynman gauge, whereas the second term is characteristic of the light-cone gauge.

Since the loop we are concerned with lies on the plane orthogonal to the gauge vectors, the

O(g4) contribution due to the exchange of two free propagators will not be different from

the one in Feynman gauge and thereby will not be considered here.

The self-energy correction. In ref. [63] the self-energy corrections to the gluon and

scalar propagators at O(g2) for SUSY N = 4 have been computed. Since the Wilson loop

we are considering lies on the plane orthogonal to the gauge vectors n and n̂, it is easy to

convince oneself that only “transverse” Green functions contribute, which, in turn, get only

finite O(g2) corrections in this gauge [60], at variance with the more familiar Feynman

gauge [26]. Since we expect that all the O(g4) will be finite, there will be no need of

a dimensional regularization. Typically in momentum space the gluon transverse Green

function receives the O(g2) correction

G
(2)
αβ = −δαβ

ig2N

4π2p2

[

π2

6
− L2(1 − ζ)

]

, (A.1)

where α, β = 1, 2, L2 is the Euler’s dilogarithm and ζ = 2np n̂p
p2 .

A direct calculation shows that the term containing the dilogarithm, when Fourier

transformed and integrated over the contour, gives a vanishing contribution. Then the

one-loop correction to the single exchange is

S2 =

(

g2

8π2

)2

(N2 − 1)

(

π2

6

)
∮

dt2dt1
(ẋ1 · ẋ2) − |ẋ1||ẋ2|

(x1 − x2)2
(A.2)
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The triple vertex correction. The triple vertex diagram appears in the expansion of

the Wilson-loop at the order g4. It corresponds to compute (we have suppressed a total

factor −ig3/N , that will be inserted back at the end of the calculation)

S3 =

∫ 1

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3〈Tr[A(t1)A(t2)A(t3)]〉 =

=
1

3

∮

dt1dt2dt3η(t1t2t3)Tr[A(t1)A(t2)A(t3)]

(A.3)

where

A(ti) ≡ Aµ(x(ti))x
µ(ti) − i|ẋ(ti)|Φθ(x(ti)). (A.4)

and η(t1, t2, t3) is defined in (3.11). Since the measure of integration dt1dt2dt3η(t1, t2, t3)

is invariant under cyclic permutations, the integrand in (A.3) can simply be written as

〈Tr[A(t1)A(t2)A(t3)]〉 =ẋλ(t1)ẋ
µ(t2)ẋ

ν(t3)〈Tr[Aλ(t1)Aµ(t2)Aν(t3)]〉−
− 3ẋλ(t1)|ẋ(t2)||ẋ(t3)|〈Tr[Aλ(t1)Φθ(t2)Φθ(t3)]〉.

(A.5)

To begin with, we shall compute

〈Tr[Aλ(t1)Aµ(t2)Aν(t3)]〉 = Tr[T aT bT c]〈Aa
λ(t1)A

b
µ(t2)A

c
ν(t3)〉 =

= Tr[T aT bT c]

∫

d2ωp1d
2ωp2d

2ωp3

(2π)6ω
eip1·x1+ip2·x2+ip3·x3〈Aa

λ(p1)A
b
µ(p2)A

c
ν(p3)〉0.

(A.6)

We have introduced the short-handed notation xµ
i ≡ xµ(ti). The tree-level correlation

function 〈Aa
λ(p1)A

b
µ(p2)A

c
ν(p3)〉 is given in ref. [63]. We get

〈Aa
λ(p1)A

b
µ(p2)A

c
ν(p3)〉 =(2π)2ωδ2ω(p1 + p2 + p3)

igfabc

p2
1p

2
2p

2
3

[

δνλ

(

p3µ − p2µ

p+
2

p+
3

)

+

+ antisymmetrization in (1λ) (2µ) (3ν)

]

,

(A.7)

with p+ ≡ np. Then the contribution to the Wilson-loop is given by

1

3

∮

dt1dt2dt3η(t1, t2, t3)ẋ
λ
1 ẋµ

2 ẋν
3Tr[Aλ(t1)Aµ(t2)Aν(t3)]〉 =

= igfabcTr[T aT bT c]

∮

dt1dt2dt3ǫ(t1, t2, t3)(ẋ1 · ẋ3)×

× ẋµ
2

∫

d2ωp2d
2ωp3

(2π)4ω

eip2·(x2−x1)+ip3·(x3−x1)

p2
2p

2
3(p2 + p3)2

[

p3µ − p2µ

p+
2

p+
3

]

,

(A.8)

where ǫ(t1, t2, t3) is the same function defined in section 3. eq. (A.8) can be then cast in

the form

1

3

∮

dt1dt2dt3η(t1, t2, t3)ẋ
λ
1 ẋµ

2 ẋν
3Tr[Aλ(t1)Aµ(t2)Aν(t3)]〉 =

= gfabcTr[T aT bT c]

∮

dt1dt2dt3ǫ(t1, t2, t3)(ẋ1 · ẋ3)×

×
(

ẋ2
∂I1(x3 − x1, x2 − x1)

∂x3
− ẋ2

∂I2(x3 − x1, x2 − x1)

∂x2

)

,

(A.9)
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which implicitly defines the functions I1(x3−x1, x2−x1) and I2(x3−x1, x2−x1). Actually

for a planar space-like Maldacena-Wilson loop the function I2(x3 − x1, x2 − x1) can be

rewritten in a way which is manifestly Lorentz invariant. Any reference to the original

light-like directions disappears. The explicit expressions for I1(x3−x1, x2−x1) and I2(x3−
x1, x2 − x1) are given in appendix B.

Similarly, the scalar contribution turns out to be
∮

dt1dt2dt3η(t1t2t3)ẋ
λ(t1)|ẋ(t2)||ẋ(t3)|〈Tr[Aλ(t1)Φθ(t2)Φθ(t3)]〉 =

= gfabcTr[T aT bT c]

∮

dt1dt2dt3ǫ(t1t2t3)|ẋ(t1)||ẋ(t3)|×

×
(

ẋ2 ·
∂I1(x3 − x1, x2 − x1)

∂x3
− ẋ2 ·

∂I2(x3 − x1, x2 − x1)

∂x2

)

,

(A.10)

where symmetry properties of the integrals have been suitably taken into account. Sum-

ming together vector and scalar contributions, we eventually obtain

S3 =gfabcTr[T aT bT c]

∮

dt1dt2dt3ǫ(t1t2t3)(ẋ1 · ẋ3 − |ẋ(t1)||ẋ(t3)|)×

×
(

ẋ2 ·
∂I1(x3 − x1, x2 − x1)

∂x3
− ẋ2 ·

∂I2(x3 − x1, x2 − x1)

∂x2

)

.

(A.11)

This expression, a part from the kinematical factor, is identical to A in (3.16). From here

on we can follow exactly the same steps taken in section 3. We shall again find that S2

cancels with a term coming from integrating by parts S3.

Eventually we are left with the gauge invariant result

Itot = −g4(N2 − 1)

128π4

∮

dt1dt2dt3ǫ(t1t2t3)
(ẋ1 · ẋ3 − |ẋ(t1)||ẋ(t3)|)

(x1 − x3)2
×

× (x3 − x2) · ẋ2

(x3 − x2)2
log

(

(x2 − x1)
2

(x3 − x1)2

)

.

(A.12)

We stress again that in light-cone gauge both self-energy correction and triple-vertex con-

tribution are finite, at variance with what happens in Feynman gauge; there the two

corrections exhibit a pole at ω = 2 and only in their sum the pole cancels and the finite

quantity Itot is eventually recovered.

It is almost trivial to realize that Itot vanishes identically when the contour is a circle.

Choosing the usual trigonometric parametrization for the circle, we can write

Itot = −g4(N2 − 1)

512π4

∮

dt1dt2dt3ǫ(t1t2t3) cot

(

t2 − t3
2

)

log

(

1 − cos(t1 − t2)

1 − cos(t3 − t1)

)

= 0.

(A.13)

since the integrand

ǫ(t1t2t3) cot

(

t2 − t3
2

)

log

(

1 − cos(t1 − t2)

1 − cos(t3 − t1)

)

(A.14)

is antisymmetric under the exchange t2 ↔ t3, while the measure dt1dt2dt3 and the region

of integration are symmetric.
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B. Some properties of the integrals I1(x, y) and I2(x, y)

For the integral I1(x, y) defined in (3.13) one can easily perform the integration over the

momenta. In order to integrate over p1, we first introduce the Feynman parametrization

for the two denominators, which depends on p1. Then we perform the change of variable

p1 7→ p1 − αp2. This yields

I1(x, y) ≡
∫

d2ωp1d
2ωp2

(2π)4ω

eip1x+ip2y

p2
1p

2
2(p1 + p2)2

=

=

∫ 1

0
dα

∫

d2ωp2

(2π)2ω

eip2(y−αx)

p2
2

∫

d2ωp1

(2π)2ω

eip1x

[p2
1 + α(1 − α)p2

2]
2

(B.1)

The integral over p1 can be now evaluated by means of the Schwinger representation for

the denominator in (B.1). We obtain

I1(x, y) =
1

(4π)ω

∫ 1

0
dα

∫ ∞

0
dββ1−ω

∫

d2ωp2

(2π)2ω

eip2(y−αx)

p2
2

e
−x2

4β
−βα(1−α)p2

2 =

=
1

(4π)ω

∫ 1

0
dα(α(1 − α))ω−2

∫ ∞

0
dββ1−ω

∫

d2ωp2

(2π)2ω

eip2(y−αx)

p2
2

e−
x2

4β
−βp2

2.

(B.2)

The integral over the second momentum can be now performed by introducing a second

Schwinger parameter λ. We end up with the following parametric representation for I1(x, y)

I1(x, y) =
1

(4π)2ω

∫ 1

0
dα(α(1−α))ω−2

∫ ∞

0
dββ1−ω

∫ ∞

0
dλ(λ+β)−ωe

− (y−αx)2

4(λ+β)
−x2α(1−α)

4β . (B.3)

By setting τ = λ + β, we can first integrate over β and then over τ . In fact

I1(x, y) =
1

(4π)2ω

∫ 1

0
dα(α(1 − α))ω−2

∫ ∞

0
dττ−ω

∫ τ

0
dββ1−ωe

− (y−αx)2

4τ
−x2α(1−α)

4β =

=
4ω−2(x2)2−ω

(4π)2ω

∫ 1

0
dα

∫ ∞

0
dττω−2e−

(y−αx)2

4
τΓ

(

ω − 2,
x2(1 − α)ατ

4

)

=

=
Γ(2ω − 3)

64π2ω(ω − 1)

∫ 1

0
dα

[α(1 − α)]ω−2

[α(x − y)2 + (1 − α)y2]2ω−3×

× 2F1

(

1, 2ω − 3, ω,
(y − αx)2

α(x − y)2 + (1 − α)y2

)

.

(B.4)

In the last equality, we have used the following integral given on the table
∫ ∞

0
xµ−1e−βxΓ(ν, αx)dx =

ανΓ(µ + ν)

µ(α + β)µ+ν 2F1

(

1, µ + ν, µ + 1,
β

β + α

)

. (B.5)

This representation is useful to study the behavior around x = 0, y = 0 and y = x.

Since (B.1) is manifestly symmetric in the exchange x ↔ y and x ↔ y − x, it is sufficient

to study the behavior only around x = 0. The other two cases will obviously display a

similar behavior. At x = 0 we find

I1(0, y) =
Γ(2ω − 3)2F1 (1, 2ω − 3, ω, 1)

64π2ω(ω − 1) [y2]2ω−3

∫ 1

0
dα[α(1 − α)]ω−2 =

=
Γ2(ω − 1)

64π2ω(2ω − 3)(2 − ω)

1

[y2]2ω−3

(B.6)
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The integral I2(x, y) is defined as follows

I2(x, y) = − Γ(2ω − 3)

64π2ω(ω − 1)

∫ 1

0
dα

αω−1(1 − α)ω−2

[α(1 − α)x2 + (y − αx)2]2ω−3×

× 2F1

(

1, 2ω − 3, ω,
(y − αx)2

(y − αx)2 + α(1 − α)x2

)

.

(B.7)

The origin of this object is explained in appendix A and it is related to light-cone gauge

analysis of the Wilson-loop. There, its definition is given in momentum space. The expres-

sion (B.7) is obtained performing the integration over the momenta along the same path

followed for I1(x, y).

In the following we shall compute its behavior at x = 0, y = 0 and y = x. At x = 0:

I2(x, y) = −Γ(2ω − 3)2F1 (1, 2ω − 3, ω, 1)

64π2ω [(ỹ)2]2ω−3 (ω − 1)

∫ 1

0
dααω−1(1 − α)ω−2 =

= − Γ2(ω − 1)

128π2ω(2 − ω)(2ω − 3) [(y)2]2ω−3 =

=
1

128π4(ω − 2)y2
+ O

(

(ω − 2)0
)

(B.8)

At y = 0:

I2(x, y) = − Γ(2ω − 3)

64π2ω(ω − 1) [x]2ω−3

∫ 1

0
dαα2−ω(1 − α)ω−2

2F1 (1, 2ω − 3, ω, α) =

= −Γ(2ω − 3)Γ(3 − ω)Γ(ω − 1)

64π2ω(ω − 1) [x]2ω−3 3F2(1, 2ω − 3, 3 − ω;ω, 2|1) =

= −Γ(2ω − 3)Γ(3 − ω)Γ(ω − 1)

64π2ω [x]2ω−3

(Γ(ω − 2) − 2Γ(3 − ω)Γ(2ω − 4))

4(ω − 2)3Γ(2 − ω)Γ(2ω − 4)
=

= − 1

384π2x2
+ O

(

(ω − 2)1
)

(B.9)

At y = x:

I2 = − Γ(2ω − 3)

64π2ω(ω − 1)[x2]2ω−3

∫ 1

0
dααω−1(1 − α)1−ω × 2F1 (1, 2ω − 3, ω, 1 − α) =

= −Γ(2ω − 3)Γ(2 − ω)Γ(ω)

64π2ω(ω − 1)[x2]2ω−3 3F2(1, 2ω − 3, 2 − ω;ω, 2|1) =

= −Γ(2ω − 3)Γ(2 − ω)Γ(ω)

64π2ω(ω − 1)[x2]2ω−3

1 − Γ(ω−1)
Γ(3−ω)Γ(2ω−2)

2(ω − 2)
=

=
1

64π4(ω − 2)x2
+ O

(

(ω − 2)0
)

(B.10)

A useful combination of I1 and I2. In the following we shall show that the following

combination of the derivatives of I1 and I2,

Vµ =
∂I1(x, y)

∂xµ
− ∂I2(x, y)

∂yµ
, (B.11)
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can be reduced to a very simple form. First, we shall take the derivative. We find

Vµ =
Γ(2ω − 3)

64π2ω(ω − 1)

∫ 1

0
dα

(

∂

∂xµ
+ α

∂

∂yµ

)[

[α(1 − α)]ω−2

[(ỹ − αx̃)2]2ω−3 G[ξ]

]

=

=
Γ(2ω − 3)

64π2ω(ω − 1)

∫ 1

0
dα

[α(1 − α)]ω−2

[(ỹ − αx̃)2]2ω−3 G′[ξ]

(

∂ξ

∂xµ
+ α

∂ξ

∂yµ

)

,

(B.12)

where

ξ =
(ỹ − αx)2

α(1 − α)x2 + (ỹ − αx)2
and G[ξ] = ξ2ω−3

2F1 (1, 2ω − 3, ω, ξ) . (B.13)

Since
(

∂ξ

∂xµ
+ α

∂ξ

∂yµ

)

= −2(1 − ξ)ξ
xµ

x2
, (B.14)

the expression for Vµ can be rewritten as follows

Vµ = − 2Γ(2ω − 3)x̃µ

64π2ω(ω − 1)(x̃2)2ω−2

∫ 1

0
dα[α(1 − α)]1−ωG′[ξ]ξ4−2ω(1 − ξ)2ω−2. (B.15)

The derivative of G[ξ] can be now computed by using the well-known properties of the

hypergeometric functions:

G′(ξ) =
2ω − 3

ω
ξ2ω−4(ω2F1 (1, 2ω − 3, ω, ξ) + ξ 2F1(2, 2ω − 2;ω + 1; ξ)) =

= (2ω − 3)ξ2ω−4
2F1(1, 2ω − 2;ω; ξ)

(B.16)

where we have used the identity

γ2F1(α, β; γ; ξ) − γ2F1(α, β + 1; γ; ξ) + αξ2F1(α + 1, β + 1; γ + 1; ξ) = 0. (B.17)

Thus

Vµ = − Γ(2ω − 2)xµ

32π2ω(ω − 1)(x2)2ω−2

∫ 1

0
dα[α(1 − α)]1−ω

2F1(1, 2ω − 2;ω; ξ)(1 − ξ)2ω−2. (B.18)
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